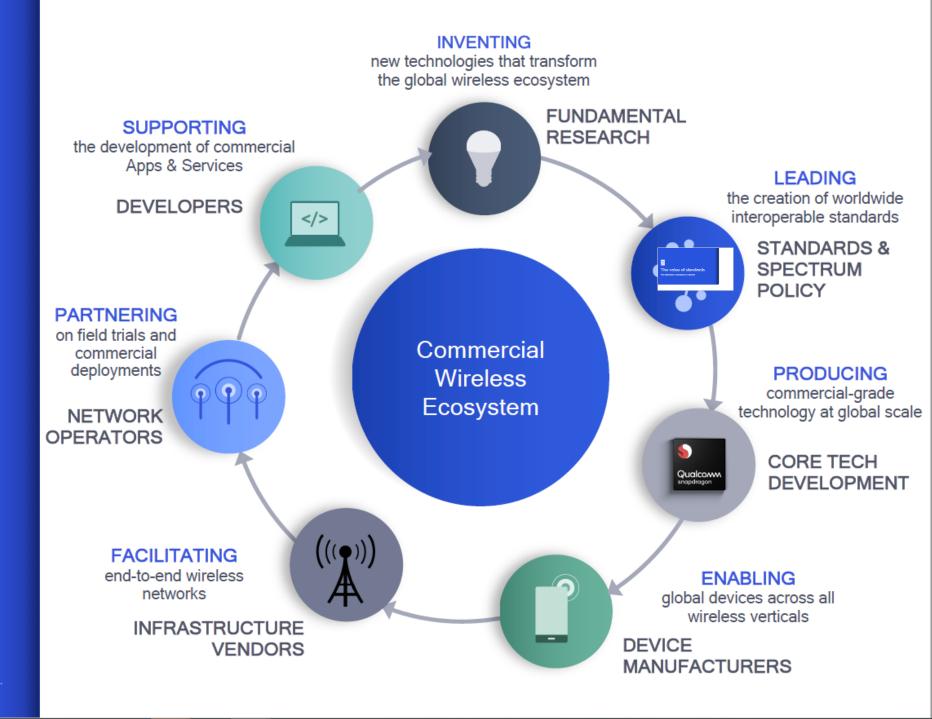


San Diego, CA

The essential role of technology standards Driving interoperability, ecosystem development, and future innovation


Etienne Chaponniere Vice President, Technical Standards

Agenda

- The value of standards
- Standards in mobile devices
- Cellular: demystifying 3GPP
- WLAN: Wi-Fi
- WPAN: Bluetooth

Collaborating across the global wireless ecosystem

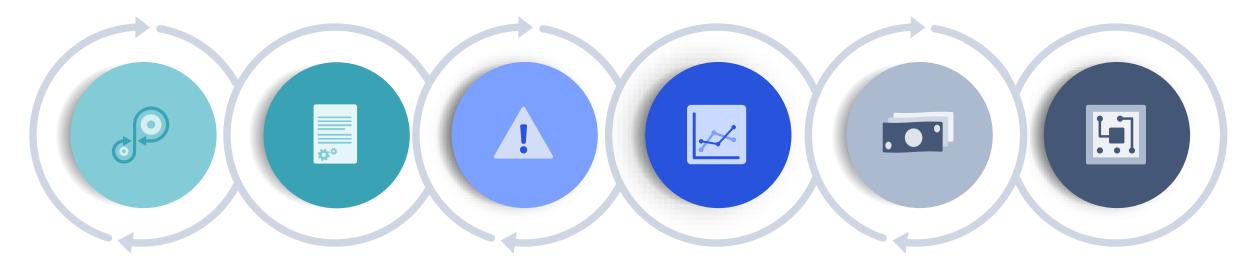
- Constantly advancing foundational innovations
- Enabling new capabilities at rapid pace
- Collaborations across ecosystem enables a vibrant, growing market

The value of standards

Why leadership in standards is important

The communications industry is based on technology standards

Standards are essential for commercializing new technologies


Ensuring inter-vendor system interoperability

Spurring transparent and fair industry competition

Technology standardization is key for an openly competitive ecosystem

Communications industry is based on technology standards

Ensuring system interoperability

while enabling product differentiation and spurring transparent industry competition

Meeting regulatory requirements

test and certification procedures are developed to aid in meeting obligations

Reducing market risk

especially in areas of large investments (e.g., 5G infra)

Creating new markets

and expanding addressable markets of existing products and technology

Lowering cost

through economies of scale and multivendor sourcing

Improving technology

multiple companies participate, collaborate, compete – best prevails

Standards create significant value for the wireless ecosystem

Industry leaders contribute to technology standards

Better, quickerto-market products

Communications standards are very complex in nature; thus, leadership in designing technology standards goes hand in hand with leadership in product development

Standards leadership

Valuable intellectual property (IP)

When inventions are contributed to standards, they become available to everyone in the ecosystem; therefore, it is important to have a solid IP framework that adequately incentivizes inventors to contribute their innovation to standards bodies

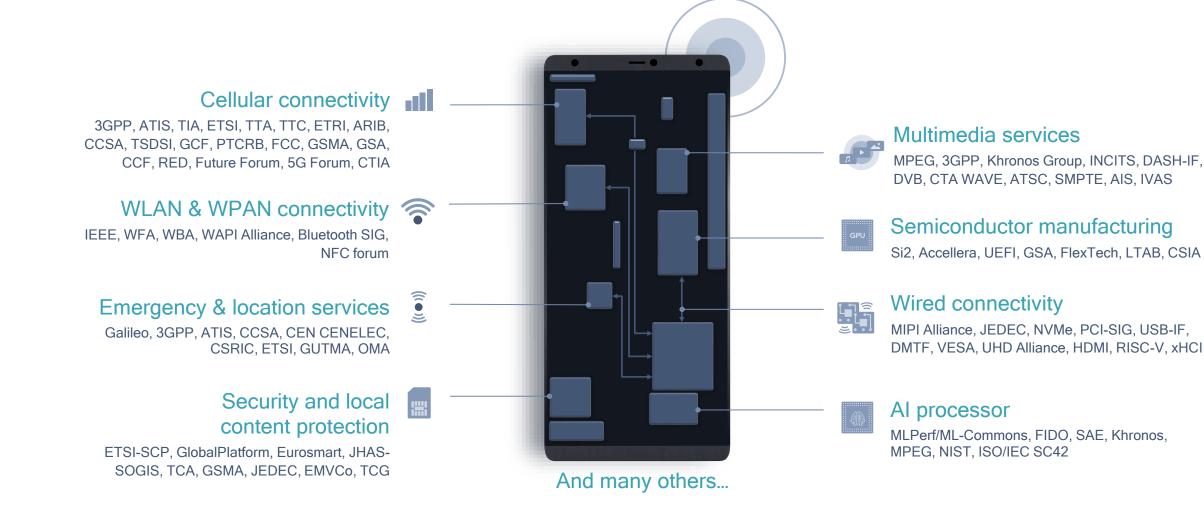
Driving technology forward with new functionalities and efficiencies, fostering healthy market growth that benefits the broader ecosystem

Qualcom

What are the ingredients of a successful standard?

We participate in

standards and industry organizations


Qualcom

Standards in mobile devices

Complex systems that require global interoperability

Also broadly applicable across device categories and industries

Many standardized components and interfaces in a smartphone

5GAA, 3GPP, SAE International V2X SC, ETSI TC ITS, IEEE 1609 WG, CAICV, OmniAir Consortium, CAMP, CCSA, C-SAE, NTCAS, ITS America, ERTICO, C-ITS, ITS Forum, ISO TC 204, NEMA

ADAS/Automated Driving

ISO TC 22, SAE International ORAD Committee, ISO TC 204 WG 14, IEEE 2846 WG, IEEE 2851 WG, Accellera Functional Safety WG, Khronos Group Safety Critical WG, 5G ADA

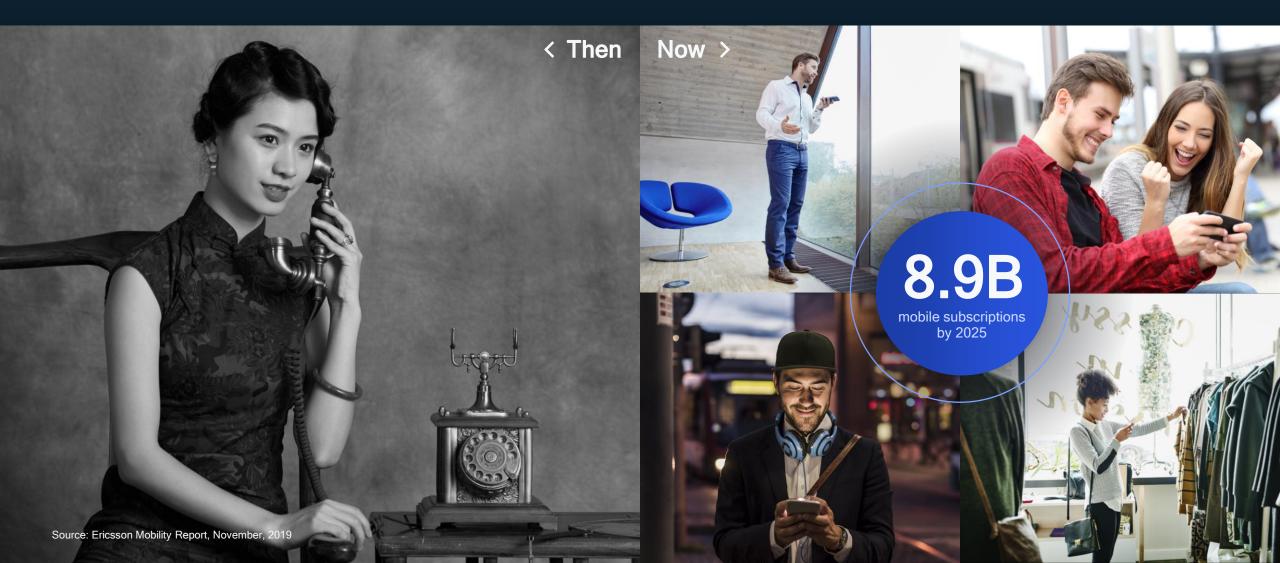
Telematics/Infotainment

CCC, WFA Automotive Market Segment TG, AGL, AEC, AESIN, AEIA

Vehicle Security

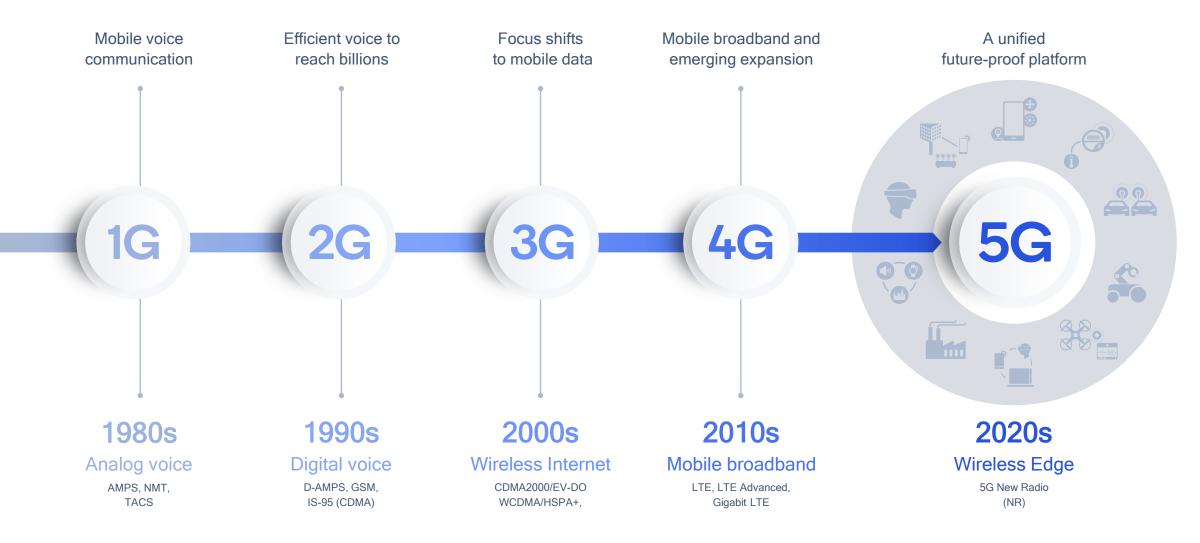
SAE International Vehicle Electrical System Security and Vehicle Cybersecurity Systems Engineering Committees, Auto-ISAC

> Standardized technology across components and interfaces in automotive



Cellular standards

The heart of the mobile ecosystem – leading standards development and the ecosystem expansion


Cellular has revolutionized the way we communicate

From voice only to a plethora of new services that our lives depend on today (e.g., smartphone)

Mobile has made a leap every ~10 years

Continuous innovation between "G"

3GPP drives global cellular standards

2G, 3G, 4G and 5G

* Source: 3GPP Mobile Competence Centre (3GPP Support Team) Summary Report from RAN#86 (RP-192371); Including 3G/4G/5G Release 99/4/5/6/7/8/9/10/11/12/13/14/15/16

Member-driven organization

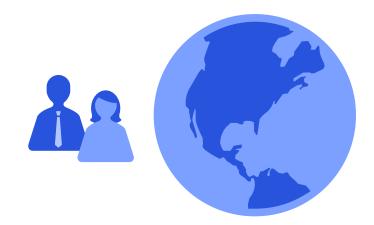
Relies on R&D and tech inventions from members, e.g., 'contributions'

Collaborative engineering effort

Consensus-based, tech-driven effort across 100s of entities

Distributed work-flow

Scale/complexity requires division of work into smaller, specialized pieces


Global events leading to new standardization challenges

Ripple effects of COVID: more remote participation allowed, real decisions happen in face-to-face meetings

Geopolitical tensions disrupting in person participation of key standards members

- Obtaining US visas
- Organizing meetings in Taiwan

Qualcom

3GPP defines complete end-to-end system specifications

Radio Access Network (RAN)

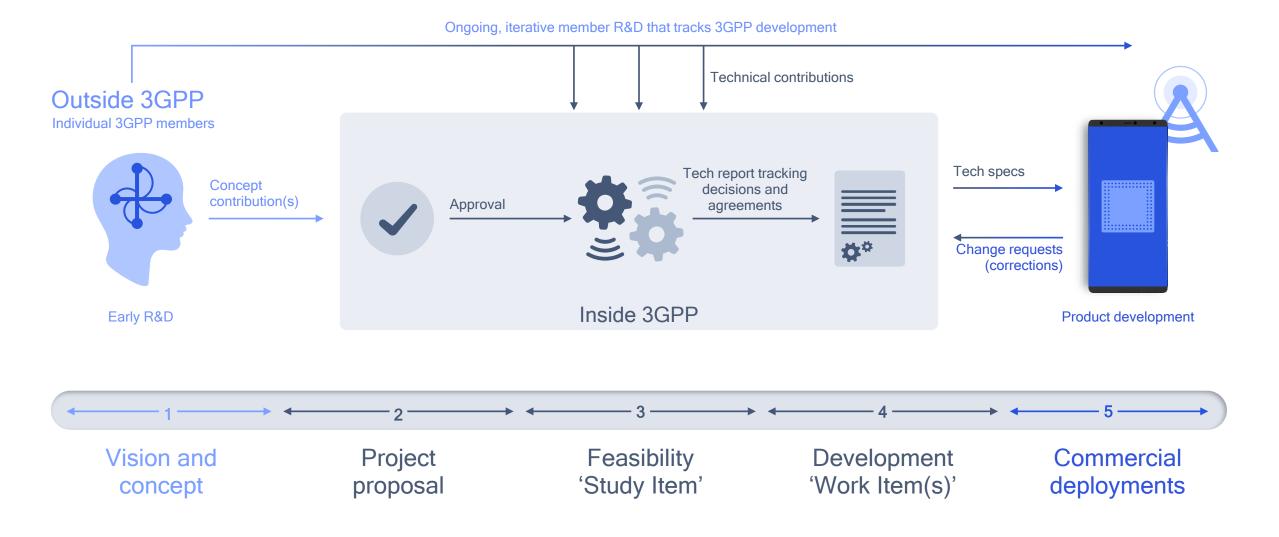
Implements radio access technology, e.g., 5G NR, LTE, managing radio link to connect UEs to networks

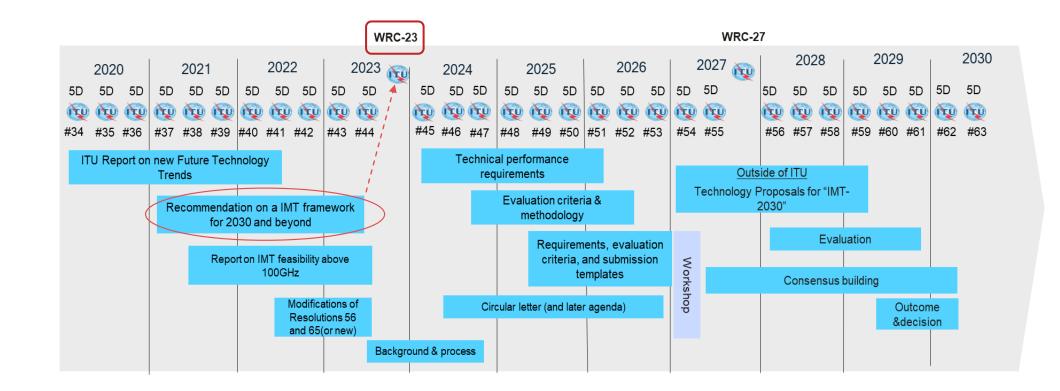
Core Network (CN)

Manages macro-mobility, sessions, quality of service, policies, security, and routes traffic to outside world, e.g., Internet, or local intranet

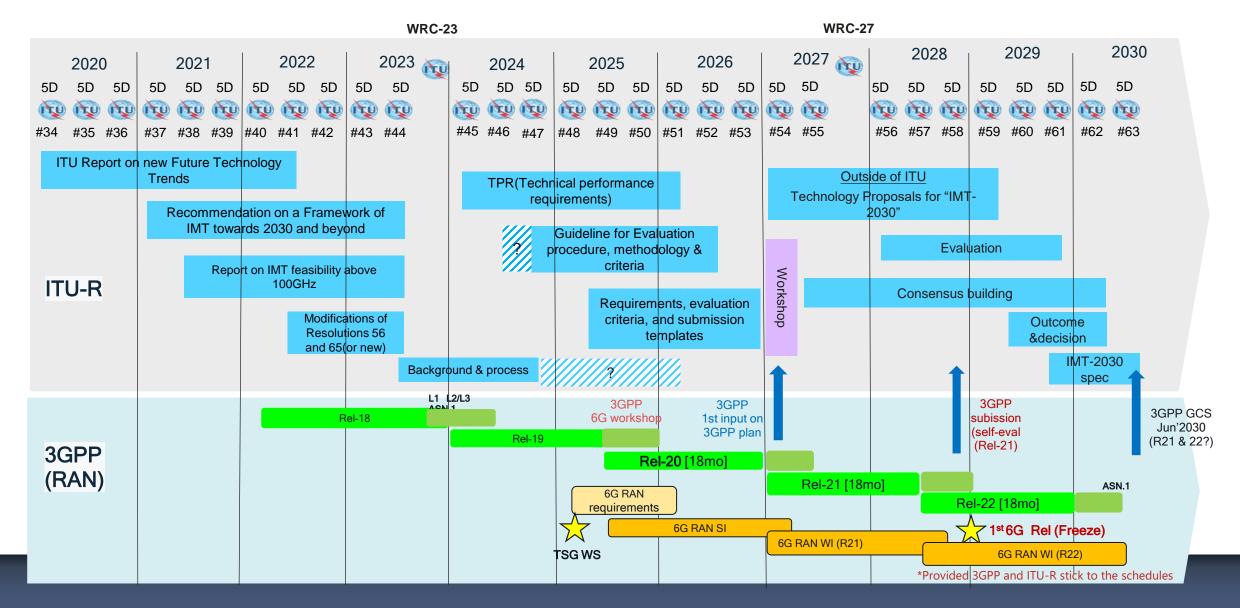
User Equipment (UEs) Devices, e.g., smartphones and all types of IoT devices that connect to services via radio access technology

Services

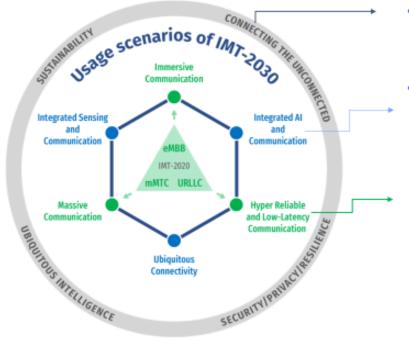

Framework for service delivery architecture, multimedia, billing, charging, etc.


Test Requirements

Defines performance and conformance test procedures to ensure interoperability used for certification (e.g., GCF)


This large scope requires division of work into smaller, specialized working groups in 3GPP

A typical workflow in 3GPP

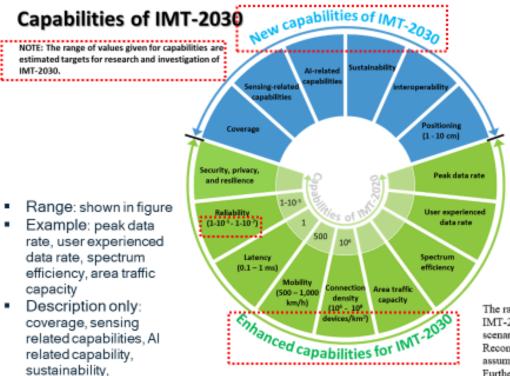

The road to 6G: The timeline

The road to 6G: The timeline

IMT-2030 Usage Scenarios

General

Usage scenarios and overarching aspects of IMT-2030


- Overarching aspects
- · Distinguishing design principles commonly applicable to all usage scenarios
- Sustainability, security/privacy/resilience, connecting the unconnected, ubiquitous intelligence
- · Usage Scenarios: 5 Communications and 1 Connectivity
 - 3 enhanced usage scenarios
 - Mostly requires enhanced capabilities/KPI (communication)
 - Immersive Communication
 - Hyper Reliable and Low-Latency Communication
 - Massive Communication
 - 3 new usage scenarios
 - enhanced capabilities/KPI (communication) for IMT-2030
 + New capabilities of IMT-2030
 - Integrated Artificial Intelligence and Communication
 - Integrated Sensing and Communication
 - Ubiquitous Connectivity: presently uncovered or scarcely covered areas, particularly rural, remote and sparsely populated areas

Confidential -Qualcomm Technologies, Inc. and/or its affiliated companies -May Contain Trade Secrets 13

The road to 6G

IMT-2030 Capabilities

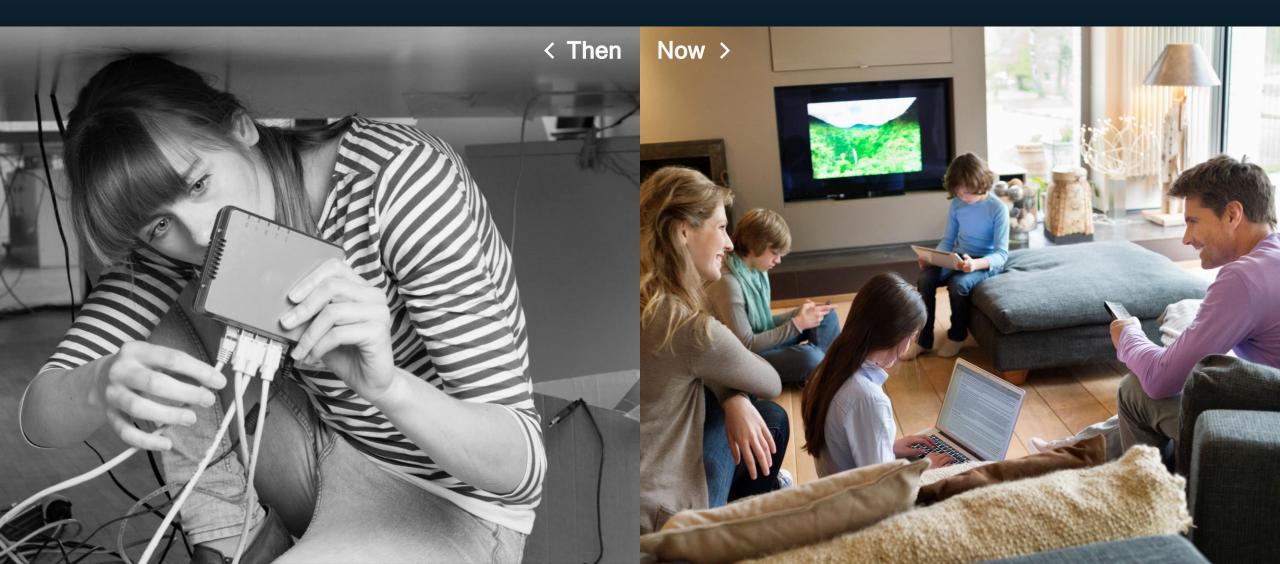
General

- 6 New capabilities
- Coverage, Positioning, Sensing-related capabilities, Al-related capabilities, Sustainability, Interoperability
- 9 Enhanced capabilities
- Range of values or example values for some capabilities instead of single value
- General description only (no KPI value) for some capabilities. Details would be defined in detail in TPR (Technical Performance Requirements, year of 2024-2025) phase
- Explicit description: estimated targets for research and investigation

The range of values given for capabilities are estimated targets for research and investigation of IMT-2030. All values in the range have equal priority in research and investigation. For each usage scenario, a single or multiple values within the range would be developed in future in other ITU-R. Recommendations/Reports. These values may further depend on certain parameters and assumptions including, but not limited to, frequency range, bandwidth, and deployment scenario. Further these values for the capabilities apply only to some of the usage scenarios and may not be reached simultaneously in a specific usage scenario.

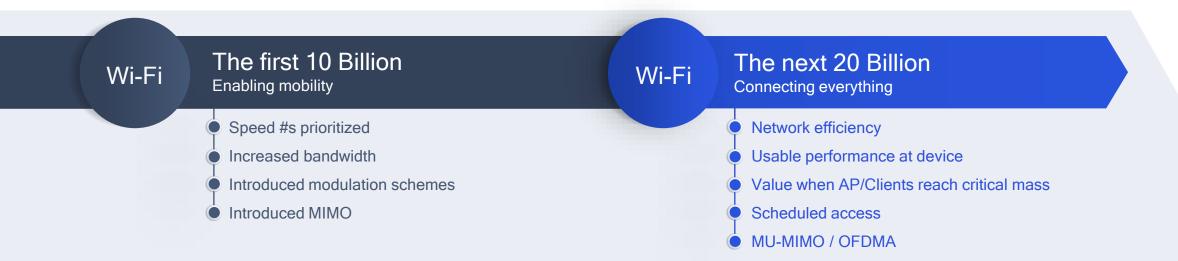
The road to 6G

interoperability



Wi-Fi Standards

Driving the technology evolution of wireless local area networking


Wi-Fi has revolutionized the way we access the internet

Cutting-the-wire for a wide range of devices – PCs, tablets, TVs, smartphones, etc...

Evolving networks from speed to capacity

Core technology evolution and Qualcomm Technologies leadership

IEEE 802.11 Working Groups

Develops and maintains backward compatible global MAC and PHY standards

Defines spectrum use for Wi-Fi: 2.4 GHz, 5 GHz, 6 GHz, 60 GHz, and sub-1 GHz unlicensed bands

Releases key MAC and PHY performance upgrades with 4-6 year cadence Industry standards

Symbiotic relationship since 1999

Feedback on standards and market requirements

Wi-Fi Alliance (WFA)

Develops test plans, manage interoperability test programs, and organizes industry plug fests

Develops industry specifications complementary to IEEE standards

Conducts regulatory advocacy for Wi-Fi technologies

Drives Wi-Fi technology marketing activities

IEEE 802.11 Working Groups

Actively drives Wi-Fi technology standardization process

Holds key leadership positions in working/task groups, e.g., 802.11 Vice Chair, 802.11be Chair, etc.

-		_	
		_	
_		-	
		_	
		_	
	LØ.		

Leads in quality contributions to Wi-Fi standards (e.g., 802.11ax)

Qualcom

Wi-Fi Alliance (WFA)

Consistently selected to be part of industry interoperability testbeds

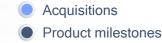
Holds key leadership positions on the Board of Directors (since 2008) and WFA task groups

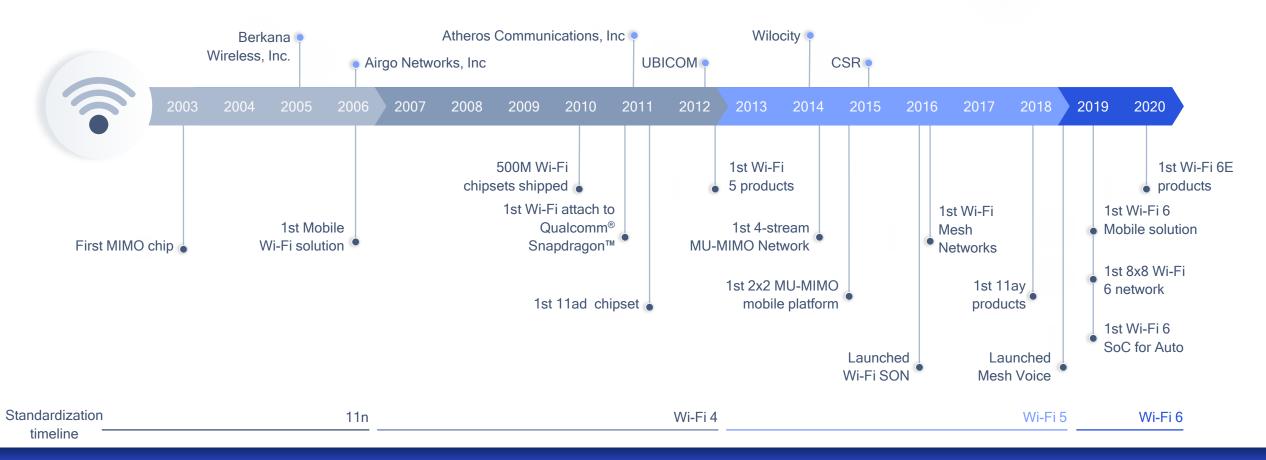
Received "Wi-Fi Alliance 2020 Industry Impact Award" and "Outstanding Leadership and Contribution" awards for sponsor members in multiple years

We are committed in pushing standardized Wi-Fi technology forward

Multiple generations of successful global Wi-Fi standards

Time


A rich history of leading key Wi-Fi innovations


Advanced R&D | Standardization | Successful commercialization

	\sim	\sim	\sim	
~		44	4	
~			96	

>000000000C						
 Book of the second state of the secon		Wi-Fi 5: 802.11ac Drove MU-MIMO – the foundational technology – into the 802.11ac standard Proved to the ecosystem on the viability and value of MU-MIMO for Wi-Fi systems		Wi-Fi 6: 802.11ax Drove key UL OFDMA and UL MU-MIMO designs into the 802.11ax standards Developed synchronized AP scheduling, trigger-based OFDMA and MU-MIMO		
						Continued leadership in IEEE and WFA
 Wi-Fi 4: 802.11n MIMO-OFDM (spatial multiplexing) and transmit beamforming Implemented MIMO-OFDM system architecture for mass market products² (e.g., PCs, routers) Drove the success of "pre-standard" MIMO products 		802.11ad / a	ау	802.11	ah	Nominal work on Wi-Fi 7 / 802.11be is just starting
		Pioneered mmWave beam forming & antenna designs Delivered the highest performing mmWave implementation, proving the viability of mmWave Drove mmWave into the 802.11ad and brought wider bandwidths via channel bonding in 802.11ay		Drove key technologies enabling extended range, small battery operation and low-power for Wi-Fi operating in sub-1 GHz Facilitated opening of spectrum for 802.11ah sensors in Europe		, ,

Our historical Wi-Fi pedigree

4B+ Wi-Fi chips shipped since 2015

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

Bluetooth Standards

Connecting wireless personal area networks

Founded in 1998 Bluetooth

Special Interest Group (SIG)

14 Working Groups (WG)¹

Active specification projects

Driving the technology evolution and commercial success

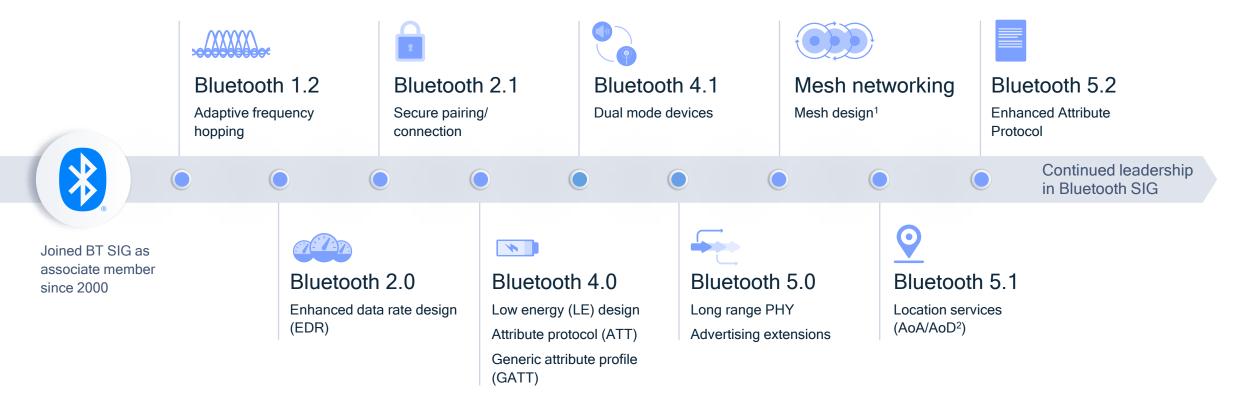
Technology standardization

 $^{\sim}15$ promoter/associate members are currently actively contributing to Core WG meetings to evolve Bluetooth specifications^2

Product qualification

World-class programs that drive product interoperability, and give access to technology and trademark licensing

Brand promotion


Campaigns to increase the awareness, understanding, and adoption of Bluetooth technology

Source: Bluetooth SIG Market Update 2020;

1 Audio/Telephony/Auto, Automation, Core Specification, Direction Finding, Discovery of Things, Easy Pairing, Generic Audio, Hearing Aid, HID, Internet, Medical Devices, Mesh, PUID, Sports and Fitness 2 Based on 6 months attendance records, analysis done in June 2020

A rich history of leading key Bluetooth innovations

Advanced R&D | Standardization | Successful commercialization

Also actively involved in creation/revisions of various Bluetooth SIG processes (e.g., Bluetooth Specification Development Process, Qualification Process)

Leading the way in Bluetooth SIG

Working Group/committee leadership and participation

Current working groups

Core Specification (CSWG) – Chair Generic Audio (GAWG) – Chair

Bluetooth Test and Interoperability (BTI) – **Chair** Automotive, Telephony, Audio (ATA) Mesh

Current committees

Bluetooth Architecture Review Board (BARB)

Bluetooth Qualification Review Board (BQRB)

Bluetooth (Qualification) Technical Advisory Board (BTAB)

Past leadership positions

Board member: 2012-2014 (CSR), 2014-2016 (Qualcomm)

Chairs or vice chairs: BARB, BQRB, Regulatory, ATA, Automation, Mesh, Internet, HID, HCI, Radio Improvements

Contributing member: Regulatory, Automation, Direction Finding, HID, Internet, Medical Devices, PUID, Sports and Fitness, HCI, Radio Improvements

Key recognitions for our leadership role

Awarded "Outstanding Technical Contributor" in 2011, 2012, 2014, 2015 (x2), 2016, 2017 (x3) Awarded "Working Group and Committee Chair of the Year" in 2010, 2018, 2019

Awarded "Bluetooth Core Specification Team Award" in 2014, 2016

5.3 Channel coding

Usage of coding scheme for the different types of TrCH is shown in table 5.3-1. Usage of coding scheme for the different control information types is shown in table 5.3-2.

Table 5.3-1: Usage of channel coding scheme and coding rate for TrCHs.

TrCH	Coding scheme
UL-SCH	
DL-SCH	LDPC
PCH	
BCH	Polar code

Table 5.3-2: Usage of channel coding scheme and coding rate for control information

Control Information	Coding scheme
DCI	Polar code
UCI	Block code
001	Polar code

5.3.1 Polar coding

The bit sequence input for a given code block to channel coding is denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K is the number of bits to encode. After encoding the bits are denoted by $d_0, d_1, d_2, ..., d_{N-1}$, where $N = 2^n$ and the value of n is determined by the following:

Denote by E the rate matching output sequence length as given in Subclause 5.4.1;

If
$$E \le (9/8) \cdot 2^{(\lceil \log_2 E \rceil - 1)}$$
 and $K/E < 9/16$

$$n_1 = \lceil \log_2 E \rceil - 1;$$

else

 $n_1 = \lceil \log_2 E \rceil;$

end if

 $R_{\min} = 1/8;$

 $n_2 = \lceil \log_2(K / R_{\min}) \rceil;$

 $n = \max\{\min\{n_1, n_2, n_{\max}\}, n_{\min}\}$

where $n_{\rm min} = 5$.

Text from a physical layer specification

TS 38.212 v15.0 - NR Section on Channel Coding

Standards Engineer Recognition

Example of Chairman minutes

3GPP TSG RAN WG2 #67bis 12 - 16 October 2009, Miyazaki, Japan

RLC UM ciphering problem recovery	Nokia Corporation, Nokia Siemens Networks REL-8 RInImp8-CsHspa	Disc			
	ppens in the field. Samsung considers the problen ssociation between RNC and NB but in the <u>UL</u> it sh				
 Samsung assumes assumes voice will be transmitted using NS-grants but the packet won't transmitted from UE side if UE doesn't have enough power, hence RLC won't create a Pl -Interdigital considers minimum set could be set such that the packet would be always transn 					
and then in power limited conditions	s the UE will loose the packets.	Ismilleu			
	e UE won't anyways create the packets. Samsung ementation. UE implementation could be set in a w	ay that			
create those packets. Nokia points -Vdf considers UE wouldn't know if HAF -Samsung asks if it can be seen in the f	nen NW cannot know what UE will do. hore easily by indicating in the spec that UE should out it cannot be guaranteed there isn't an UL probl RQ drops the packet at the end of the transmission ield that 128 packets are lost consecutively. es of implementations the issue will occur.	em.			
-For UL, Samsung considers that UE ca	or DL and it can be solved by UE implementations. an solve <u>this</u> but NW can decide to solve the proble c solution like the trying other HFNs; as this will rec	em but			
-DL resolution: UE specific? -Vdf wants to know what the solutio	n is and be convinced that it works				
-Samsung considers in this case, de HFNs and UE can report through ce	etection of the issue can be done in UE through try ell update confirm addition.	ring			
 -Vdf would like that detection of the -Nokia points out in this case there issue. 	issue should be discussed. is no guarantee that all UEs will be able to detect t	he			
-Alu considers the proposal E by No	okia is preferred. late improvement will only be useful if HFN has				
incremeted by more than one wrap-					
-The group agrees with proposal 1: ther -Nokia to report after coffee break on th					
-the group agrees with proposal 2	e status.				
-whether the detection mechanism	should be specified if FFS				
Way forward:					
-agree RRC CR in principle	at the last meating				
-The CR had been submitted -Tdoc for the CR is R2-09608					
	e next meeting. The discussion can continue by em	nail			
-Email discussion to discuss detecti to address CsoHS case or al-	ion mechanism (for DL)				
 How much it should be speci 	ified				

R2-095920