

Open RAN, Virtualization, and the Cloud

USTTI 5G, Open RAN and Emerging Technologies Training 23 June 2023 | Washington, DC Kate Dimsdale kdimsdale@ntia.gov

www.ntia.gov

Definitions

Open RAN

► The movement to create a market of open, interoperable, standards-based 5G RAN solutions

O-RAN

► Technology/specifications developed by the O-RAN Alliance

OpenRAN

▶ Project group in the Telecom Infra Project (TIP), focused on testing and validation of Open RAN solutions

Virtualized RAN (vRAN)

➤ Virtualized RAN, becoming less dependent on custom-designed and built hardware and using more commercial-off-the-shelf (COTS) computing products

Cloud RAN (C-RAN)

► Cloud-based RAN, leveraging containerized network functions to scale resources asneeded on public or private cloud services

Open vRAN/C-RAN

► Application of vRAN or C-RAN in an Open RAN environment

Virtualization vs Openness

vRAN & C-RAN Architecture

Virtualized RAN

Cloud RAN

Virtualization Advantages

- ► Disaggregate software and hardware
- ► Leverage commercial off the shelf hardware
 - Economies of scale
- ► Leverage software development cycle
 - Continuous Integration/Continuous Development (CI/CD)
 - Faster time-to-market
- "Build-to-suit"
 - Purchase the resources you need, can always incrementally add more

Cloud Advantages

- ► Same as virtualization plus:
- More network flexibility
 - Only uses the resources you need
 - Multi-use infrastructure private cloud can be offered as MEC for customers
- ▶ Network centralization in dense deployment environments

Cloud and Virtualization Concerns

- ► Energy Consumption vs Application Specific Hardware
- ► COTS hardware requiring accelerator cards
 - Open RAN specific accelerators
 - GPU/FPGA acceleration
 - On CPU acceleration
- Security
 - More touchpoints, more risk
- ► Knowledge gap
 - Telecom world vs IT world
- ▶ Public cloud
 - Cost
 - Control
 - Availability

Development of Open RAN

Organizations Involved

- Sets overall 5G NR Specifications
- Serves as overall baseline for O-RAN

- MNO-led organization
- Sets O-RAN
 Specifications,
 building upon 3GPP

- Develops testing and some specifications for open and interoperable connectivity solutions
- Focus on Open RAN testing

 Industry Organization set up to work with governments to inform policies around Open RAN and ways to incentivize innovation and deployment

Source: O-RAN Software Community

RAN Intelligent Controller

- ► Non-Real Time RIC
 - >1s response
 - Part of Service Management and Orchestration Function
 - rApps
 - Use case example: dynamic cell loading/optimization
- ► Near Real Time RIC
 - 10ms-1s response
 - xApps
 - Use case example: efficient use of spectrum and interference mitigation

Challenges to Adoption

- ► Legacy telecom approaches
 - Security
 - Deployment
- ► Maturity of specifications/devices
- ► Adoption/R&D cycle
- ► Supply Chain Shortages
- ▶ Workforce

