National Aeronautics and Space Administration

Space Communications & Navigation

International Spectrum Management: A NASA Perspective

> Glenn Feldhake

> NASA International Spectrum Program Manager

20 September 2019

A Little About NASA

- Established 29 July 1958; began operations 1 October 1958
- Started with three research labs; now have 10
- This year's budget is 0.49% of the national budget
- 17,200 employees plus contractors
- ~65 operational spacecraft (including robots)
- ~40 planned in the next 4-5 years (many small satellites)
- Currently has ~2,300 frequency assignments domestically authorized (Spacecraft & terrestrial operations)
- Design, build, and launch U.S. weather satellites

NASA Facilities

Spectrum Dependent Equities – Part I

EOS (LEO) Communication & Sensing

Spectrum Dependent Equities – Part II

...70% of NASA frequency assignments are not operating in space

- Research
 - **High-altitude balloons**
 - Weather radars
 - **Technology demonstrations**
 - **Radio astronomy**
 - Aircraft: Communication, radiolocation, and radionavigation lacksquare
 - **RF** signals to test and calibrate equipment
- **Day-to-day operation of Centers**
 - Handheld radios for maintenance crews
 - **Building-to-building communications**
 - Security at front gate/emergency response lacksquare
 - Public address systems/wireless microphones

Types of NASA Space Missions

- Telecommunication (e.g., TDRSS)
- Deep Space (e.g., Voyager, Curiosity)
- Space Research (e.g., Hubble Telescope, International Space Station)
 - Science
 - Exploration
- Earth Exploration (e.g., AQUA, EOS-AM, SMAP)
 - Active Sensors
 - Passive Sensors

Tracking and Data Relay Satellite System (TDRSS)

Hubble Space Telescope

Voyager

Soil Moisture Active/Passive (SMAP)

Earth Exploration: Examples of Data Products and Uses

Disaster Management

- **Extreme Weather**
- Floods
- **Coastal Hazards/Tsunamis**
- Volcanoes
- **Earthquakes**
- Landslides/Subsidence
- **Droughts**
- **Dust Storms**
- Wildfires

Long-Term Management

- **Climate Change** •
- **Pollution Monitoring**
- **Plant Health**
- Land Usage
- **Population Density**
- **Deforestation**
- Desertification

Data products are made available to other Administrations via: SERVIR (www.servir.net) and UN SPIDER (www.un-spider.org)

Earth Exploration Allocations for Active Sensing Emissions¹

Fraguanay Rand Radia Sanviaa		Fraguancy Rand	Padio Sonvico	
Frequency band	Raulo Selvice	Frequency Band	Raulo Selvice	
401-403 MHz	EESS (E-s)	432-438 MHz	eess (active)	
460-470 MHz	[eess (s-E)]	1215-1300 MHz	EESS (active)	
1525-1535 MHz	eess	3100-3300 MHz	eess (active)	
1690-1710 MHz	[eess (s-E)]	5250-5570 MHz	EESS (active)	
2025-2110 MHz	EESS (E-s) (s-s)	8550-8650 MHz	EESS (active)	
2200-2290 MHz	EESS (s-E) (s-s)	9200-9800 MHz	EESS (active)	
7190-7250 MHz	EESS (E-s)	9800-9900 MHz	eess (active)	
8025-8400 MHz	EESS (s-E)	9900-10400 MHz	EESS (active)	
13.75-14 GHz	eess	13.25-13.75 GHz	EESS (active)	
25.5-27 GHz	EESS (s-E)	17.2-17.3 GHz	EESS (active)	
28.5-30 GHz	eess (E-s)	24.05-24.25 GHz	eess (active)	
29.95-30 GHz	eess (E-s)(s-s)	35.5-36 GHz	EESS (active)	
37.5-40 GHz	eess (s-E)	78-79 GHz	[EESS (active)]	
40-40.5 GHz	EESS (E-s) / eess (s-E)	94-94.1 GHz	EESS (active)	
65-66 GHz	EESS	130-134 GHz	EESS (active)	

¹ CAPITAL LETTERS: Primary Allocation lower case letters: Secondary Allocation [Square Brackets]: Allocation by footnote

Allocations for Passive Sensing²

Frequency Band	Radio Service	Frequency Band Radio Service
1370-1400 MHz	[eess (passive)]	36-37 GHz EESS (passive)
1400-1427 MHz	EESS (passive)	50.2-50.4 GHz EESS (passive)
2640-2655 MHz	[eess (passive)]	52.6-59.3 GHz EESS (passive)
2665-2690 MHz	eess (passive)	86-92 GHz EESS (passive)
2690-2700 MHz	EESS (passive)	100-102 GHz EESS (passive)
4200-4400 MHz	[eess (passive)]	109.5-122.25 GHz EESS (passive)
4950-4990 MHz	[eess (passive)]	148.5-151.5 GHz EESS (passive)
6425-7250 MHz	[eess (passive)]	155.5-158.5 GHz EESS (passive)
10.6-10.7 GHz	EESS (passive)	164-167 GHz EESS (passive)
14.8-15.35 GHz	[eess (passive)]	174.8-191.8 GHz EESS (passive)
15.35-15.4 GHz	EESS (passive)	200-209 GHz EESS (passive)
18.6-18.8 GHz	EESS (passive)	226-231.5 GHz EESS (passive)
21.2-21.4 GHz	EESS (passive)	235-238 GHz EESS (passive) / [EESS (active)]
22.21-22.5 GHz	EESS (passive)	250-252 GHz EESS (passive)
23.6-24 GHz	EESS (passive)	275-1000 GHz [eess (passive)]*
31.3-31.8 GHz	EESS (passive)	

² [Italics/square brackets] : Not allocated but in use.

Types of Orbits

Geostationary Orbit (GSO)

Low Earth Orbit (NGSO)

Highly Elliptical Orbits (HEO)

Deep Space

Near Earth Network

Space (TDRSS) Network

6-----

Deep Space Network

Goldstone Complex California

International Space Station

- Construction Started in 1998
- Crew
 - Visited by 230 people from 18 countries
 - Continuously inhabited since 2 November 2000
 - Current crew: Six People
- Size
 - Height: 20 m (66 ft)
 - Width: 108.5 m (356 ft)
 - Length: 72.8 m (239 ft)
 - Mass: 419,455 kg (924,740 lb)
- 36 Different Radio Systems onboard
 - Communication
 - Docking
 - Spacesuits
 - Experiments
 - Wi-Fi routers & Bluetooth devices
 - Amateur radio

...Just to provide some perspective

Organization of NASA's Spectrum Management Office

Headquarters Spectrum Policy: Five Civil Servants + Contractors

Spectrum Management Office (Cleveland, OH): 10 Civil Servants + Three contractors

10 NASA Centers: Two Civil Servants each

Four Phases of NASA Spectrum Management

ITU & CITEL Participation

- Filing and Coordination of NASA Satellites
- ITU-R Study Groups:
 - Study Group 7 (Science Service)
 - Working Party 7B (Space Radiocommunication Applications)
 - Working Party 7C (Remote Sensing)
 - Study Group 3 (Radiowave Propagation)
 - Working Party 3J (Propagation Fundamentals)
 - Working Party 3K (Point-to-Area Propagation)
 - Working Party 3M (Point-to-Point and Earth-Space Propagation)
- World Radiocommunication Conferences
- Plenipotentiary Conference
 - Definition of "radio"
 - Uses of remote sensing data
- Development of Inter-American Proposals

Space Frequency Coordination Group (SFCG)

Mission Statement: SFCG is the pre-eminent radio-frequency collegiate of Space Agencies and related national and international organizations through which global space systems spectrum resources are judiciously husbanded for the benefit of humanity.

30 Member Agencies representing: Argentina, Australia, Austria, Azerbaijan, Brazil, Canada, China, European Union, France, Germany, India, Italy, Japan, Malaysia, Nigeria, Republic of Korea, Russian Federation, Spain, South Africa, Sweden, Taiwan, The Netherlands, Ukraine, United Arab Emirates, United Kingdom, United States

Meets once per year

Four Working Groups:

- > Preparations for WRCs
- > Communications Management
- > Remote sensing
- > Satellite coordination

http://www.sfcgonline.org

A Few Activities Outside the United States but still on the Earth

- Australia: Study icing conditions of aircraft
- Bermuda: Tracking radars
- Brazil: High altitude balloon studies of ozone
- Chile: Looking at conditions for planting vineyards
- Greenland: Robots studying ice sheets
- Norway: Ka-band propagation measurements
- Peru (& elsewhere): Searching for archeological sites
- Thailand: Mosquito tracking using remote sensors for disease research

Spectrum Management Challenges

- Increasing spectrum demand/New technologies
- Tracking regulatory paperwork
 - Being perceived as "red tape" by projects/programs
 - Spectrum Managers vs. "Spectrum Messengers"
- Small satellites/New operators in space
- New visitors and vehicles to the International Space Station
- Unknown projects/Programs within NASA
- Justifying the importance of NASA products to those of other communities

Thank You!

