Spectrum Economics

USTTI RF Spectrum Management Course
September 18, 2019

Giulia McHenry – FCC
Giulia.McHenry@fcc.gov
Spectrum is a Limited Resource
Spectrum Value

• Spectrum is an input for the provision of wireless services, to support commercial services, public uses and even private purposes.

• Several types of spectrum value derived from services
 – Economic value of license is equal to the present value of profits from services delivered by spectrum
 – Economic and social value enabled by the spectrum are difficult to measure

• Scarcity (finite nature) of spectrum and value of wireless services leads to high market value and demand for spectrum
Escalating Demand and Value

• Wireless communications and broadband have dramatically increased demand for spectrum

• Up until 25 years ago
 – Less congestion in the airwaves
 – Relatively few commercial applications
 • Broadcasting – TV, radio
 • Satellite

• Emergence of higher valued spectrum-based services (e.g. wireless broadband) increased value
Increasing Demand is Certain

• Surging demand for spectrum-based services
 – By 2021…
 • 5.5 billion global mobile users, up from 4.9 billion in 2016
 • 63 percent of mobile data traffic will be offloaded
 – By 2023…
 • Mobile data traffic grow at compound annual rate of 42%
 • Mobile traffic will group 8-fold from 2017

• More uses and users imply more scarcity
 – Licensed broadband services
 – Unlicensed / licensed-exempt (i.e. Wi-Fi) services
 – Public sector/government services
 • Emergency response, crime prevention, aviation, weather satellite, defense, space exploration, etc.
Increasing Spectrum Supply

• Demand and scarcity driving search for more usable spectrum and intensity of use

• Advances in 5G are increasing effective supply of spectrum for wireless broadband
 – Increasing opportunities above 3 GHz, especially millimeter wave
 – Increasing opportunities for sharing
 – Increasing potential of unlicensed spectrum
Maximizing Spectrum Value

• With explosive growth in mobile communications, industry and governments appreciate economic value of spectrum
 – Enables economic activity, growth and innovation
 – Critical to profitability of mobile industry
 – Creates revenues from sale of spectrum licenses

• Regulators face pressure to make spectrum available for commercial use and ensure government has spectrum necessary for operations
Maximizing Spectrum Value

• Policymakers’ goal is to ensure that all spectrum is put to highest and best use
 – Balancing array of interests and users: commercial, government, public
 – Protecting incumbents and fostering innovation

• Two underlying questions
 – How to maximize economic and social benefits from spectrum (i.e., economic and social value)?
 – How should spectrum be managed?
Spectrum Management

• Spectrum management/assignment approaches have evolved with technology and notion of spectrum value

• Combination of approaches typically applied
 – Command and control of specific use rights
 – Market based trade of flexible use rights
 – Commons (unlicenced, rule-based)

• Several hybrid models also exist
Command and Control

- Regulator pre-determines service type and user(s)
 - Limits spectrum trading or repurposing
 - Fees sometimes assessed to recover administrative costs
- In U.S., still applied to historic uses and where competitive markets unlikely:
 - Broadcasting (historically, now limited trading)
 - Government users
 - Satellite earth stations
- Difficult to ensure spectrum put to highest valued use, so commercial spectrum will be less valuable
- Model may still be appropriate where markets unlikely, but there are social benefits to a service
Flexible Rights of Use

• Flexible use and market-based trade
 – Licensee determines use, subject to minimum technical requirements (i.e. technology neutrality)
 – Free to transfer spectrum to another user (and sometimes service) and keep profits
• Initial rights awarded through competitive bidding (auctions)
 – Payments may be lump sum or fee-based
 – Resale rights creates a secondary market for spectrum
• Flexibility allows spectrum to flow to users with highest value
• Examples:
 – Commercial mobile services
 – Other telecom services
Spectrum Commons

• Rule-based usage for all users who meet requirements
• Useful for applications where potential interference is low (i.e., short-range, low power), so exclusivity not necessary
• No exclusive right to spectrum implies no market value for spectrum, but may enable immense economic activity
 – Widely available, low cost technology
 – Opportunity for innovation
 – E.g., Wi-Fi, LTE-U, Bluetooth
• Challenge: Must allocate sufficient unlicensed spectrum to limit congestion and enable services, while balancing with other resource needs.
Drivers of Economic Spectrum Value

\[NPV_i = \sum_{t=0}^{n} \frac{R_{it} - C_{it}}{(1 + r_{it})^t} \]

Type of Service
Scope of Service
Quality of Service

Build out Cost
Handset Cost
Operating Cost

Uncertainty
• Interference
• Negotiation
• Security
Cost of Delay
• Deployment timing
Drivers of Spectrum Value

• Net Profits From Deploying a Band of Spectrum are Determined by Four Broad Factors:
 – Net Profits = Revenues
 - Capitol expenditure
 - Operating expenditure
 - Cost of capital

• Two Additional Factors Determine the Present Value:
 – Timing of revenues and costs
 – Risk and uncertainty

• User’s Willingness to Pay is Based on Relative Value of Alternative Assets (Lower Bound)
Drivers of Spectrum Value

• Value of a specific spectrum license likely to vary by a number of specific factors, including:
 – Frequency and associated technical characteristics
 – License rules, feasible services, certainty
 – Geography and size of coverage area
 – Availability of equipment: harmonization, similar bands
 – Spectrum supply (current and future)
 – Socioeconomic factors, including demographics, population density, income, political climate
 – Regulatory climate, including risks, costs of doing business
 – Other factors
Determining Spectrum Value

• To estimate value of licensed commercial spectrum, can apply combination of typical valuation techniques:
 – Discounted cash flows (DCF)
 – Market comparables
 – Cost savings DCF
 – Econometric modeling

• Nature of spectrum can make this very complex
• Only applies to licensed commercial spectrum. Excludes:
 – Economic activity enabled by spectrum (licensed and unlicensed)
 – Consumer welfare
 – Non-commercial uses (government, educational, other public)
Spectrum Enabled Value

- Spectrum based services also add value to economy
 - Equipment manufacturing/spending
 - Spending on unlicensed spectrum services/equipment
- Users of the services in turn create value and generate income – contribute to Internet services/app economy
- Economic benefits enabled by unlicensed and licensed spectrum difficult to quantity. Proxies to consider:
 - Investments on R&D and equipment
 - End-user market revenues
 - Size of economies that use services
Public Sector and Social Value

• Public sector benefits even more difficult to quantify
• Countries take different approaches to ensuring sufficient spectrum available for government commercial. Examples:
 – U.S. sets aside specific spectrum allocations for government
 • Repurpose spectrum for commercial use as needed, compensating impacted government spectrum users
 – U.K. imposes market-based rates for public users, requiring that government pay market rates and access spectrum markets
 – Challenges to both approaches

• Many countries face question of how to incentivize public users to use spectrum “efficiently”
Thank you!